Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Braz. j. oral sci ; 22: e238076, Jan.-Dec. 2023. ilus
Article in English | LILACS, BBO | ID: biblio-1393427

ABSTRACT

Triclosan (TCS) is a chlorinated diphenyl ether and a possible active agent against microorganisms. Due to its probability of reducing dental plaque accumulation, TCS can be added as a substance for oral hygiene. Aim: To evaluate the efficacy and antimicrobial capacity of TCS against Pseudomonas aeruginosa and Streptococcus mutans. Methods: This work evaluates the percentage of bacteria inhibition of P. aeruginosa (ATCC 27853) and S. mutans (ATCC 25175). TCS concentrations between 2 and 128 µg.mL-1 were tested. Results: An inhibitory potential of TCS was found against S. mutans. No percentage of inhibition was detected against P. aeruginosa (technical and biological triplicate). Conclusion: TCS, an antimicrobial agent used in dentifrices, can reduce S. mutans levels therefore these dentifrices should be indicated for patients with a high risk of caries. However, further study is needed, including antimicrobial analyses against other microbial conditions


Subject(s)
Pseudomonas aeruginosa , Streptococcus mutans , Triclosan/antagonists & inhibitors , Dental Caries , Oral and Dental Hygiene Products , Anti-Infective Agents, Local , Mouth Diseases
2.
Braz. j. oral sci ; 20: e211512, jan.-dez. 2021. ilus
Article in English | BBO, LILACS | ID: biblio-1254424

ABSTRACT

Aim: Several systemic diseases, such as periodontitis and apical periodontitis, can cause extensive bone resorption. Host defense peptides may have the potential for the development of novel therapies for the bone resorption process. This study evaluated the potential of host defense peptides clavanins A, MO, and LL-37 in in vitro osteoclastogenesis. Methods: RAW 264.7 cultures were stimulated with recombinant of receptor activator of nuclear factor kappa B ligand in the presence of different tested concentrations of host defense peptides, besides calcium hydroxide and doxycycline. Cellular viability, nitric oxide production, and a number of differentiated osteoclast-like cells were also evaluated. Results: Results showed that none of the substances were cytotoxic, except for 128 µg.mL-1 of doxycycline after 3 days. Host defense peptides, calcium hydroxide, and doxycycline did not interfere in nitric oxide production or downregulated it. An exception was observed in the presence of 2 µg.mL-1 of doxycycline, in which nitric oxide production was up-regulated. All host defense peptides were capable of reducing osteoclast-like cell differentiation. Conclusion: Host defense peptides clavanins A and MO demonstrated to be potential suppressors of osteoclastogenesis in vitro without interfering in cellular viability and nitric oxide production. These promising results need to be further analyzed in in vivo models of bone resorption


Subject(s)
Osteogenesis , Bone Resorption , Antimicrobial Cationic Peptides , Nitric Oxide
SELECTION OF CITATIONS
SEARCH DETAIL